今天谋考网小编整理了如果考高中物理的话一般会考什么?相关信息,希望在这方面能够更好帮助到大家。
本文目录一览:

高考物理知识点-机械振动和机械波
高考物理中,机械振动和机械波是核心知识点。简谐运动是物体在回复力作用下,位移与偏离平衡位置成正比且总指向平衡位置的振动。其特征包括F=-kx和a=-kx/m的回复力与加速度,振动在平衡位置速度最大、加速度为零,而在最大位移处速度为零、加速度最大。描述简谐运动的物理量有位移(矢量,最大值为振幅A)、振幅(振动强度)、周期T(振动快慢,与频率f成倒数关系)以及振动图像,后者反映位移随时间变化的规律,可用于解析各种物理量变化情况。
弹簧振子和单摆是简谐振动的实例。单摆的周期和频率仅由弹簧劲度系数和质量决定,与环境和放置方式无关。单摆振动条件为最大摆角小于5°,其振动周期与振幅、质量无关,只受摆长和重力加速度影响。受迫振动是系统在周期性驱动力作用下的振动,其频率与固有频率无关,共振则发生在驱动力频率等于固有频率时。
机械波由机械振动在介质中传播形成,分横波(质点振动垂直于波传播方向)和纵波(质点振动与波传播方向一致)。波动图像描绘质点相对于平衡位置的位移,可提供振幅、波长、质点振动信息。波动问题的多解性源于时间周期性、空间周期性及双向传播。波的衍射和叠加是波特有的传播现象,而干涉则涉及频率相同的波叠加时的加强与减弱区域。
声波是空气中的纵波,具有特定频率范围和超声波特性,广泛应用于探测、医疗等领域。多普勒效应则描述了波源与观察者相对运动时,接收到的频率变化现象。

高中物理机械振动和机械波知识点?
“机械振动和机械波是高中物理教学中的难点,有哪些知识点需要学生学习呢?下面我给大家带来高中物理课本中机械振动和机械波知识点,希望对你有帮助。
1.简谐运动
1定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.
2简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置.
简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.
3描述简谐运动的物理量
①位移x:由平衡位置指向振动质点所在位置的有向线段,是向量,其最大值等于振幅.
②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱.
③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f.
4简谐运动的影象
①意义:表示振动物 *** 移随时间变化的规律,注意振动影象不是质点的运动轨迹.
②特点:简谐运动的影象是正弦或余弦曲线.
③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.
2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T.
3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型.
1单摆的振动可看作简谐运动的条件是:最大摆角α<5°.
2单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力.
3作简谐运动的单摆的周期公式为:
①在振幅很小的条件下,单摆的振动周期跟振幅无关.
②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关.
③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值.
4.受迫振动
1受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.
2受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关.
3共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振.
共振的条件:驱动力的频率等于振动系统的固有频率. .
5.机械波:机械振动在介质中的传播形成机械波.
1机械波产生的条件:①波源;②介质
2机械波的分类
①横波:质点振动方向与波的传播方向垂直的波叫横波.横波有凸部波峰和凹部波谷.
②纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有密部和疏部.
[注意]气体、液体、固体都能传播纵波,但气体、液体不能传播横波.
3机械波的特点
①机械波传播的是振动形式和能量.质点只在各自的平衡位置附近振动,并不随波迁移.
②介质中各质点的振动周期和频率都与波源的振动周期和频率相同.
③离波源近的质点带动离波源远的质点依次振动.
6.波长、波速和频率及其关系
1波长:两个相邻的且在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长.振动在一个周期里在介质中传播的距离等于一个波长.
2波速:波的传播速率.机械波的传播速率由介质决定,与波源无关.
3频率:波的频率始终等于波源的振动频率,与介质无关.
4三者关系:v=λf
7. 波动影象:表示波的传播方向上,介质中的各个质点在同一时刻相对平衡位置的位移.当波源作简谐运动时,它在介质中形成简谐波,其波动影象为正弦或余弦曲线.
由波的影象可获取的资讯
①从影象可以直接读出振幅注意单位
②从影象可以直接读出波长注意单位.
③可求任一点在该时刻相对平衡位置的位移包括大小和方向
④在波速方向已知或已知波源方位时可确定各质点在该时刻的振动方向.
⑤可以确定各质点振动的加速度方向加速度总是指向平衡位置
8.波动问题多解性
波的传播过程中时间上的周期性、空间上的周期性以及传播方向上的双向性是导致“波动问题多解性”的主要原因.若题目假设一定的条件,可使无限系列解转化为有限或惟一解
9.波的衍射
波在传播过程中偏离直线传播,绕过障碍物的现象.衍射现象总是存在的,只有明显与不明显的差异.波发生明显衍射现象的条件是:障碍物或小孔的尺寸比波的波长小或能够与波长差不多.
10.波的叠加
几列波相遇时,每列波能够保持各自的状态继续传播而不互相干扰,只是在重叠的区域里,任一质点的总位移等于各列波分别引起的位移的向量和.两列波相遇前、相遇过程中、相遇后,各自的运动状态不发生任何变化,这是波的独立性原理.
11.波的干涉:
频率相同的两列波叠加,某些区域的振动加强,某些区域的振动减弱,并且振动加强和振动减弱的区域相互间隔的现象,叫波的干涉.产生干涉现象的条件:两列波的频率相同,振动情况稳定.
[注意]①干涉时,振动加强区域或振动减弱区域的空间位置是不变的,加强区域中心质点的振幅等于两列波的振幅之和,减弱区域中心质点的振幅等于两列波的振幅之差.
②两列波在空间相遇发生干涉,两列波的波峰相遇点为加强点,波峰和波谷的相遇点是减弱的点,加强的点只是振幅大了,并非任一时刻的位移都大;减弱的点只是振幅小了,也并非任一时刻的位移都最小. 如图若S1、S2为振动方向同步的相干波源,当PS1-PS2=nλ时,振动加强;当PS1-PS2=2n+1λ/2时,振动减弱。
12.声波
1空气中的声波是纵波,传播速度为340m/s.
2能够引起人耳感觉的声波频率范围是:20~20000Hz.
3超声波:频率高于20000Hz的声波.
①超声波的重要性质有:波长短,不容易发生衍射,基本上能直线传播,因此可以使能量定向集中传播;穿透能力强.
②对超声波的利用:用声纳探测潜艇、鱼群,探察金属内部的缺陷;利用超声波碎石治疗胆结石、肾结石等;利用“B超”探察人体内病变.
13.多普勒效应:由于波源和观察者之间有相对运动使观察者感到频率发生变化的现象.其特点是:当波源与观察者有相对运动,两者相互接近时,观察者接收到的频率增大;两者相互远离时,观察者接收到的频率减小。
高中物理机械振动和机械波命题特点
1、以课本演示实验为背景,考查描述机械运动和机械波的物理量。
2、以振动影象和波形图为载体,考查描述机械运动和机械波的物理量以及波的特性。
3、以简谐运动为载体,考查能量转化问题。
4、从学生思维定势处命题。
高中物理机械振动和机械波考点剖析
1、从命题型别来看:选择题是本部分高考命题的主打型别,绝大部分题目都是 以这种形式呈现,其次是填空类题型,计算或证明类题型除在新课程改革 实验区外,出现的机率最低,且表现出极强的综合性,与动力学规律的联络相当普遍,“机械振动与机械波”知识仅占有真题的较少部分。
2、从命题数量及所占分值比例来看:在每套高考理综试卷或高考物理试卷中,“机械振动与机械波”仅占据一席之地,命题数量最多不超出两个。
3、从命题难度来看:由于波的影象与常规有所不同、又涉及多解,显得略有难度之外,总的命题难度不高,本年度“机械振动与机械波”所有高考命题的难度均徘徊在易题与中档题之间。
4、 从命题涉及知识点来看:“机械振动与机械波”高考命题覆盖面较广,在参与统计的考卷中,共涉及了简谐运动、简谐运动的特例、简谐运动的图 像、外力作用下的振动、机械波、横波的影象等六个大的知识点,并特别注重了对重点知识点的考查,其中横波的影象考查次数最多,其次是简谐运动的影象命题, 机械振动、波的特有现象包括干涉、衍射和多普勒效应也是考查的知识点。
5、从命题知识点考查形式来看:“机械振动与机械波”命题的一 个显著特点就是考查具有较强的综合性,知识点间的联络较为突出。主要表现在两个方 面,一是“机械振动与机械波”块内知识点间的融合,一个命题往往涉及到振动或波的多个方面,不少题目同时涉及到机械振动和机械波的知识点,特别值得一提的 是振动影象与波动影象的融合,再就是振动影象与描述波的物理量间的融合;第二个大的方面就是与块外知识点间的融合,主要体现为与动力学规律的综合。
<>的人还:
如果考高中物理的话一般会考什么?
谋考网(https://www.moukao.com)小编还为大家带来如果考高中物理的话一般会考什么?的相关内容。
高中物理的重点应该是放在力学,运动和能量,静电场和磁场上,其余的基本只会出点小题
力学运动和能量
1999年高考科研测试题 如图1所示,在光滑地面上并放两个相同的木块,长度皆为l=1.00m,在左边的木块的左上端放一小金属块,它的质量和一个木块的质量相等.现令小金属块以初速度v0=2.00m/s开始向右滑动,金属块与木块间的动摩擦因数μ=0.10,取g=10m/s2,求右边木块的最后速度.
�解 若金属块最后停在左边的木块上,则两木块和金属块以相同的速度运动,设共同的速度为v,x表示金属块最后距左边木块的左端的距离,则0<x≤l.
�方法一 达共同速度v历时为t,两木块移动距离为s,金属块及两木块的加速度分别为a1和a2,由牛顿第二定律和运动学公式可得
�μmg=ma1,μmg=2ma2,
�v=v0-a1t,v=a2t,
�v2-v02=-2a1(s+x),v2=2a2s.
�方法二 由动量守恒及功能关系可得
�mv0=3mv,(1/2)mv02=(1/2)•3mv2+μmgx.
�以上两法代入数据均可解得x>l,不合理.证明金属块最后不能停在左边的木块上.
�设金属块最后停在右边木块上距离左端为y处,0<y≤l.令v1和v2表示两木块最后的速度,v0′表示金属块到达左边木块右端时的速度.
�方法一 t1、t2分别表示金属块在左、右两边木块上滑动的时间,s1、s2分别表示在t1时间内两木块移动的距离和在t2时间内右边木块移动的距离,a3表示金属块在右边木块上滑动时右边木块的加速度.由牛顿第二定律和运动学公式可得�
μmg=ma3,
�v0′=v0-a1t1,v1=a2t1,
�v0′2-v02=-2a1s1,v12=2a2s1,
�v2=v0′-a1t2,v2=v1+a3t2,
�v22-v0′2=-2a1(s2+y),v22-v02=2a3s2.
�方法二 由动量守恒和功能关系可得
�mv0=mv1+2mv2,
�(1/2)mv02=(1/2)mv12+(1/2)•2mv22+μmg(l+y),
�mv0=mv0′+2mv1,
�(1/2)mv02=(1/2)mv0′2+(1/2)•2mv02+μmgl.
�由以上两法均可得
v1=1m/s或(1/3)m/s,v2=(1/2)m/s或(5/6)m/s.
�因为v1不能大于v2,所以得
�v1=(1/3)m/s,v2=(5/6)m/s.
谋考网
�还可解得y=0.25m,此值小于l,是合理的.证明金属块既没有停在左边木块上,也没有超过右边木块.右边木块最后的速度(即v2)为(5/6)m/s≈0.83m/s.
电磁
(2000年高考科研试题) 如图3所示,两根相距为d的足够长的平行金属导轨位于水平的xOy平面内,一端接有阻值为R的电阻.在x>0的一侧存在沿竖直方向的非均匀磁场,磁感强度B随x的增大而增大,B=kx,式中的k是一常量.一金属直杆与金属导轨垂直,可在导轨上滑动.当t=0时位于x=0处,速度为v0,方向沿x轴的正方向.在运动过程中,有一大小可调节的外力F作用于金属杆以保持金属杆的加速度恒定,大小为a,方向沿x轴的负方向.设除外接的电阻R外,所有其他电阻都可以忽略.问:
�(1)该回路中的感应电流持续的时间多长?
�(2)当金属杆的速度大小为v0/2时,回路中的感应电动势有多大?
�(3)若金属杆的质量为m,施加于金属杆的外力F与时间t的关系如何?
图3
�解 (1)金属杆在导轨上先是向右做加速度为a的匀减速直线运动,到导轨右方最远处速度为零,后又沿导轨向左做加速度为a的匀加速直线运动.当过了y轴后,由于已离开了磁场区,故回路不再有感应电流.以t1表示金属杆做匀减速运动的时间,有t1=v0/a.从而,回路中感应电流持续的时间
�T=2t1=2v0/a.
�(2)以x1表示金属杆的速度变为v1=v0/2时它所在的x坐标,由v12=v02-2x1,可得
�x1=3v02/8a,从而,此时金属杆所在处的磁感强度�
B1=kx1=3kv02/8a,所以,此时回路中的感应电动势
� 1=B1v1l=3kv03d/16a.
�(3)以v和x表示t时刻金属杆的速度和它所在的x坐标,有�
v=v0-at,x=v0t-(1/2)at2,�
故由金属杆切割磁感线产生的感应电动势
� =Bvd=kxvd=k(v0t-(1/2)at2)(v0-at)d,(式中t<T=2v0/a)
�从而,回路中的电流�
I= /R=k(v0t-(1/2)at2)(v0-at)d/R,
�考虑到力的方向,金属杆所受的安培力
�f=-IBd=-k2(v0t-(1/2)at2)2(v0-at)d2/R,
�由牛顿第二定律知
�F+f=-ma,�
解得作用在金属杆上的外力�
F=(k2(v0t-(1/2)at2)2(v0-at)d2/R)-ma.(式中t<T=2v0/a)
以上,就是谋考网小编给大家带来的如果考高中物理的话一般会考什么?全部内容,希望对大家有所帮助!更多相关文章关注谋考网:
www.moukao.com免责声明:文章内容来自网络,如有侵权请及时联系删除。